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Solving large sparse linear systems on GPUs

• Large variety of Iterative methods
• Krylov solvers work good for many problems
• Efficiency depends on problem characteristics

• eigenvalue distribution
• diagonal dominance
• definiteness

• Black-Box Scenario: Problem characteristics are not known.

http://blog.heltontool.com/category/tools/
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The Shotgun Approach

Barrett et al.: Algorithmic bombardment for the iterative solution of linear systems: A poly-iterative approach, 
Journal of Computational and Applied Mathematics 74, 1996.

Run multiple Krylov solvers simultaneously
as poly-iterative method

• Theoretical benefits
• benefit from the fastest convergence
• drop solvers that break down

• Computational benefits
• Runtime overhead small for solvers with similar structure

• SpMM replaces SpMV to generate multiple Krylov subspaces
• Interleaving global communication for low synchronization count
• Enhanced fault-tolerance 

• Limitation: Solvers are required to have similar structure (SpMV/reduction)
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• Run different Krylov methods on large number of test matrices
• Analyze with different target metrics: Convergence, SpMV, Runtime
• Non-symmetric test matrices from University of Florida Matrix Collection

• 1,000 < n < 5,000,000;  nnz<100,000,000
• At least one of the considered methods converges within 2n SpMV
• 94 non-symmetric  test matrices in total
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• libufget
• C - interface to access matrices at UFMC
• Max Planck Institute for Dynamics of Complex Technical Systems

• MAGMA
• Accelerator-focused linear algebra software library
• Dense and sparse linear algebra routines, solvers, eigensolvers
• We choose: BiCGSTAB, CGS, QMR, IDR(2), IDR(4), IDR(8)
• University of Tennessee

• NVIDIA K40 GPU
• 1,682 GFlop/s (double precision).
• 12 GB; 288 GB/s (theoretical) –193 GB/s (experimentally)
• CUDA v. 7.5

• Solver setting
• Solve:  A x = b  for  b≣1 starting with  x ≣ 0
• Relative residual stopping criterion:  10-10|b|

Experiment setup
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Solver Robustness – The Convergence Metric
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The Shotgun Approach

Barrett et al.: Algorithmic bombardment for the iterative solution of linear systems: A poly-iterative approach, 
Journal of Computational and Applied Mathematics 74, 1996.

Run multiple Krylov solvers simultaneously
as poly-iterative method

• Original work: poly-iterative solver with BiCGSTAB, QMR, CGS
• IDR(s) structurally different, hard to combine in simultaneous fashion



Solver Orthogonality w.r.t. Problem Suitability

http://www.icl.utk.edu/~hanzt/solver_ortho/

• Which methods to include in Multi-Iterative solver?
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The Shotgun Approach

Barrett et al.: Algorithmic bombardment for the iterative solution of linear systems: A poly-iterative approach, 
Journal of Computational and Applied Mathematics 74, 1996.

Run multiple Krylov solvers simultaneously
as poly-iterative method

• Original work: poly-iterative solver with BiCGSTAB, QMR, CGS
• IDR(s) structurally different, hard to combine in simultaneous fashion

• poly-iterative solver converges in 63 of 94 test cases (67%)
• IDR(2) converges for 60 of 94 test cases (64%)
• IDR(4) converges for 67 of 94 test cases (71%)
• IDR(8) converges for 91 of 94 test cases (96%)
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Performance– SpMV count and Runtime

• SpMV count indicative for performance when using preconditioners
• IDR(8) wins most cases in SpMV metric

Target metric
SpMV Runtime
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The Price of Robustness

• IDR(8) solves many systems – but often there is a faster solver
• Normalize execution times for each matrix to fastest solver

Test matrix
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The Price of Robustness

• IDR(8) solves many systems – but often there is a faster solver
• Normalize execution times for each matrix to fastest solver
• Take average over all converging configurations

BiCGSTAB CGS QMR IDR(2) IDR(4) IDR(8)
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Summary
• IDR(s) is in a very robust solver.
• Robustness increases with shadow space dimension s.
• IDR(8) solves 91 of 94 test problems (96% success).
• For converging combinations, CGS, MQR, or BiCGSTAB often faster.
• On average, IDR(8) less than twice slower than the fastest method.

• Relate solver success to the problem origins.
• Enhance solvers with preconditioning.
• Target other architectures (Xeon Phi, low-power & embedded devices).
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Future work


